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ABSTRACT

Corrosion inside secondary pipe structures in Nuclear Power Plants is difficult to 
detect without intrusion. Statistical and machine learning techniques are used to 
predict corrosion using pipe vibration data. 3D accelerometers were used to 
record pipe vibration data in three directions, using six sensors. Vibration data 
were processed using the Hilbert-Huang Transformation, which is known for its 
adaptable basis function to non-linear and non-stationary signals. The Hilbert-
Huang Transformation using empirical mode decomposition generates multiple 
intrinsic mode functions of different amplitude and frequency levels from raw 
vibration data. From intrinsic mode functions features are extracted which 
include phase, energy, entropy, mean, standard deviation, skewness, and kurtosis. 
Logistic regression using only phase information correctly distinguished mass 
additions from baseline data in roughly 83% and 85% of the cases. Phase 
information varied substantially among different baseline runs and within trials 
of the same run. Random Forest resulted in >95% testing accuracy for both mass 
addition and mass removal data. Support Vector Machine had ~98% testing 
accuracy for mass removal and ~92% testing accuracy for mass additions when 
using Permutation Importance feature selection. When using Principle 
Component Analysis with Support Vector Machine, testing accuracy was ~68% 
testing accuracy for mass additions and ~85% testing accuracy for mass.
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Diagnosis of Corrosion Process in Nuclear Power 
Plant Secondary Piping Structures

1. INTRODUCTION

This purpose of this work is to reduce the cost of preventive maintenance of secondary structures in 
nuclear power plants (NPPs) using state-of-the art sensor modalities, data fusion, and advanced data 
analytics. Specifically, this research aims to develop and validate three-dimensional sensor system 
capable of inspecting large piping components in secondary systems and providing a pathway to move 
from inspection based  maintenance to condition-based maintenance. This is required because the 
majority of periodic piping inspections do not discover any degradation, while contributing significantly 
to operation and maintenance costs. This activity will enable reducing the cost of periodic piping 
inspections performed at NPPs. The success of this project will enable the following benefits:

 Improved capacity factor by reducing unplanned and planned outages

 Improved safety through fewer unexpected failures and repairs

 Optimized equipment operation and maintenance through early identification of faults

 Improved fault diagnostics through increased availability of data relating to faults and shared 
knowledge of fault behavior based on case studies and expertise

 Lifetime extension of existing NPPs by having an increased understanding of the current health of 
the plant components and remaining useful life estimation

 Minimizing human factors effects on non-destructive testing.

The sensor system with advanced analytics will have a larger area of coverage than the current 
nondestructive evaluation techniques and will aim to answer the question which current Aging 
Management Programs are facing (such as, where to inspect or identification of inspection locations). 
There is no currently available technology that would pinpoint which piping component needs to be 
inspected.

The rest of the report is organized as follows: Section 2 provides an overview of the piping testbed 
constructed at Vanderbilt University to mimic wall thinning due to corrosion at elbows and tee joints. 
Section 3 describes range of experimental testing performed and data collected under different operation 
conditions. Section 4 describes the Hilbert-Huang Transformation performed on experimental data to 
extract salient features. Section 5 presents data analysis performed and extraction of feature vectors to 
develop machine learning models for diagnosis. Section 6 presents initial results of machine learning 
techniques. Finally, summary and path forward is presented in Section 7.

2. OVERVIEW OF THE PIPING TESTBED

The testbed was constructed with pipe sections fabricated out of 2-inch inner diameter schedule 80 
carbon steel pipe and utilize a standard 4-bolt flange connections. A centrifugal pump (130 gpm at 0 
head) is part of the testbed design to provide fluid flow through the piping system. The flow can be shut 
off or diverted using ball valves installed next to each fitting. The system included a 30 gallon tank with a 
heating element, a pump, and a network of pipes that fed back into the tank intake. The pump was driven 
by a variable frequency drive (VFD) motor controller, and manual ball valves were used to control flow 
patterns in the pipe network. Figure 1 gives an overview of the pipe network used in this research. The 
water temperature was measured with a resistance temperature detector probe in the tank, and the pipe 
surface temperature was measured with a Milwaukee handheld infrared thermometer.
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The test bed was designed with two removable flanged fittings: a pipe elbow and pipe tee. The 
fittings were made removable so that studies of mass removal (representative of corrosion in the inner 
pipe walls) could be conducted, fittings could be replaced as needed, and so that the test bed provided 
flexibility. The pipe elbow fitting was the focus of this research. Six (6) PCB Piezotronics triaxial 
accelerometers used to collect vibration data (as shown in Figure 2) were mounted on one of the pipe 
elbow fittings. They are labeled from 101 to 106 to identify each accelerometer. The six triaxial 
accelerometers were attached approximately two centimeters apart along the bend of the pipe. Table 1
shows the model, serial number and sensitivity of the six triaxial accelerometers used for testing. These 
triaxial accelerometers were used to collect both experimental and operational modal analysis response 
data.

Figure 1. An overview image of the experimental pipe testbed.

Figure 2. Pipe elbow shown with accelerometers.
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Table 1. PCB Piezotronics triaxial accelerometers labeling and sensitivities.

Accelerometer label Serial number Sensitivity (mV/g)

101X 87143 100

101Y 87143 100

101Z 87143 100

102X 80778 100

102Y 80778 100

102Z 80778 100

103X 92855 100

103Y 92855 100

103Z 92855 100

104X 98930 100

104Y 98930 100

104Z 98930 100

105X 27044 100

105Y 27044 100

105Z 27044 100

106X 98745 100

106Y 98745 100

106Z 98745 100

A National Instruments NI cDAQ-9178 chassis with NI 9234 data acquisition cards shown in Figure 
3 was used to collect data from the six triaxial accelerometers mounted on the pipe elbow.

Figure 3. National Instruments NI cDAQ-9178 with NI 9234 data acquisition card.

3. EXPERIMENTAL TESTING AND DATA

A series of experiments were performed under different setting to understand the flow-loop and 
mimic corrosion in the elbow and in the tee. All the acceleration time history data collected for each 
experimental testing were collected by Vanderbilt University and shared with Idaho National Laboratory
for model development using machine learning techniques. Prior to modify the condition of the 
experimental flow-loop, a series of baseline accelerometer data were collected. Figure 4 shows the 
standardized raw accelerometer signal for X, Y and Z directions of sensor 101.
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Figure 4. Raw accelerometer signal for X, Y, Z directions of accelerometer 101.

3.1 Addition of Mass at Multiple Pipe Elbow Locations

The operating data of the experimental loop was collected with masses added at multiple pipe elbow 
locations on June 11, 2019. The masses was placed under the accelerometer 101, between the 
accelerometers103 and 104, and under the accelerometer 106 as shown in Figure 5. The testbed water 
brought to 80 � and held at temperature with heating unit. The pump was run at 60 Hz on VFD controller 
(‘max flow’). Flowrate not directly measured, but same 60 Hz control input was used for all tests. Data 
was collected on all 6 triaxial accelerometers for 3.2 seconds at a sample rate of 51200 samples/second. 
Ten (10) independent samples of data were collected for each trial. All masses placed on bottom side of 
pipe elbow are shown in Figure 5. Data was collected with 2.9 grams, 6.4 grams, 11.4 grams, 13.8 grams, 
and 23.5 grams mounted to the elbow at the four locations described.

3.2 Addition of Mass at Multiple Pipe Tee Locations

The operating data of the experimental loop was collected with masses added at multiple pipe tee 
locations on June 13, 2019. The testbed was operated at 80 � and head at temperature with heating 
element. The pump was run at 60 Hz on VFD controller (‘max flow’) in all trials. Data was collected for 
3.2 seconds at 51200 samples/second. Figure 6 shows the location of the accelerometers mounted to the 
tee. Masses were placed at locations on the underside of the pipe tee as shown in Figure 7. Data was 
collected with 2.9g, 6.4 g, 11.4g, 13.8 g, and 23.5 g mounted to the tee at the four locations described.
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Figure 5. Underside of the elbow with locations of mass placement labeled. Note that ‘under 103/104’ 
refers to a mass placed between the planes of the accelerometers 103 and 104 (whereas in the case of 
accelerometers101 and 106, the mass was placed directly under their respective accelerometers).

Figure 6. Accelerometer locations on the tee (accelerometer101 to the left, accelerometer 104 to the right, 
and accelerometer 201 at the back).

Under 101

Under 106

Under 
103/104

Accel 
201

Accel 
101

Accel 
102

Acce
l 103

Accel 
104
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Figure 7. Underside of tee with locations of mass placement labeled. Note that 'Under 102/3' refers to a 
mass placed between the planes of accelerometers 102 and 103 (whereas accelerometers 101, 104, and 
201 refers to the masses placed directly under respective accelerometers).

3.3 Variability in Operating Data along Pipe Elbow and Tee

The operating data of the experimental loop was collected with masses added at pipe elbow and tee 
locations from June 12, 2019 to June 21, 2019. The testbed was operated at 80 � and head at temperature 
with heating element. The pump was run at 60 Hz on VFD controller (‘max flow’) in all trials. All of the 
data was collected at approximately 2:00 pm (+/- 1 hour) each day. The testbed was brought up to steady-
state operating temperature with the thermostat set at 80 �. The temperature varied between 78 � and 80 
� due to cycling of the heating element on the tank. Data was collected from elbow starting for 8 days.
Data was collected for all flow configurations to include

 Elbow flow configuration: through elbow

 Tee flow configurations: through elbow, through both, and through tee.

3.4 Addition of Mass Roving on the Outside of Pipe Elbow

The operating data at multiple locations along the pipe elbow was collected on June 27, 2019. The 
testbed was operated at 80 � and head at temperature with heating element. The pump was run at 60 Hz 
on VFD controller (‘max flow’) in all trials. Operating tests were conducted on the pipe elbow with 
masses placed on the ‘outside’ or ‘outer channel’ of the pipe elbow along the cross section as shown in 
Figure 8.

3.5 Removal of Mass from Pipe Elbow

The operating data as mass was removed from the pipe elbow was collected between June 28, 2018 
and July 8, 2019. The testbed was operated at 80 � and head at temperature with heating element. The 
pump was run at 60 Hz on VFD controller (‘max flow’) in all trials.

This section will cover the first mass-reduction experiments conducted on a pipe elbow. Each sub-header 
corresponds to a different mass reduction trial. In all of the trials, the pipe elbow was mounted with the 
same EPDM rubber gaskets in the test bed and operating data were collected at 80 � equilibrium.

Under 
101

Under 
104

Under 
102/3

Under 
201



9

Pressure was not measured for this experiment, and it was not controlled. Table 2 shows the amount of 
mass removed for each trial.

Figure 8. Pipe elbow with accelerometers and mass placement.

Table 2. Mass removed from the elbow for each trial.
����� ������ ����� ���� ������� ������� �� ������� ���� �������

1 19 grams 0.3%

2 32 grams 0.5%

3 48 grams 0.75%

4 63 grams 1%

5 79 grams 1.25%

6 95 grams 1.5%

A 0.3% reduction in mass was used to simulate mass transfer from outside channel of pipe elbow (i.e. 
remove 20g evenly from one side of the elbow with a carbide rotary bit). Note that the baseline 
measurement from the mass roving experiment was used as the baseline measurement for the mass 
reduction trials on the elbow. The weight of the elbow before any mass removal was 6350g + 1g. The 
mass of the elbow after first mass removal (0.3%) was 6330 + 1g. Material was only removed inside of 
the flange weld to avoid the weld line. The entire outer surface was ground in final iteration of 0.3% 
material removal. Figure 9 shows where the mass was removed from the elbow.

Mass at accel. 1

Mass at accel. 3,4

Mass at accel. 6
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Figure 9. The mas was removed from the elbow is shown in the shaded area.

3.6 Mass Removal on Second Pipe Elbow

The operating data as mass was removed from the pipe elbow was collected between July 16, 2019 
and July 18, 2019. The testbed was operated at 80 � and head at temperature with heating element. The 
pump was run at 60 Hz on VFD controller (‘max flow’) in all trials. A similar process was used in the 
second iteration of the mass reduction trial on the second elbow, with the exception that the EPDM rubber 
gasket was replaced between installations of the pipe elbow. This change was adopted because the 
deterioration of the rubber gasket between installations and removals was deemed significant. It was 
determined that the variability introduced by using a fresh, new EPDM gasket on each installation would 
introduce less variability than using the same deteriorating gasket for each trial.

First temperature versus damage index test on second elbow – EPDM gasket

The operating data on the pipe elbow was collected on July 19, 2019. The water temperature was 
varied from 25 � to 80 � in steps of 5 �. The water pressure was 0 psi and pump was run at 60 Hz on
VFD controller (‘max flow’) in all trials.

The second elbow with 1.50% of its mass removed was interrogated for the impact of operating water 
temperature on damage index. The elbow was left on the test bed after the second mass reduction trial 
(with EPDM gaskets). Temperature was recorded in 5 � increments with the resistive temperature 
detector (RTD) temperature probe. Operating data collection was started within 20 seconds of the RTD 
probe reading the target temperature. The equilibrium operating temperature of the test bed without the 
heating element was found by operator experience to be approximately 68 �. Therefore, from 25 � to 65
� the test bed temperature was slightly increasing over the course of the data collection. Typically, the 
temperature had increased by either 0 or 5 � by the time the temperature was checked again (the heating 
element and RTD probe were controlled by the same switch, so to check the temperature, the heating 
element was turned on as well. This heat input was not desired when a relatively constant operating 
temperature measurement was being taken, so the element and probe were left off during data collection). 
For 70 � and above, the RTD probe and heating element were left on to maintain the desired operating 
temperature, and they automatically cycled the heating element to achieve the desired water temperature.
Pressure was relieved to 0 psi (atmospheric) with a manual valve on the tank before every dataset was 
collected. 0psi was confirmed with an analog pressure gauge on the tank.

Second Temperature versus damage index test on second elbow – EPDM gasket

Remove material from the surface on 
which flow will impinge
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The operating data on the pipe elbow was collected on July 22, 2019. The water temperature was 
varied from 25 � to 80 � in steps of 5 �. The water pressure was 0 psi and pump was run at 60 Hz on
VFD controller (‘max flow’) in all trials.

Pressure versus damage index test on second elbow – EPDM gasket

The previous temperature versus damage index test on second elbow was repeated again on July 23, 
2019. The elbow was left on the rig and the same test was conducted. This was to confirm repeatability of 
the temperature vs damage index relationship. The operating data on the pipe elbow was collected at 
water temperature of 80℃ and pump was run at 60 Hz on VFD controller (‘max flow’) in all trials. The 
water pressure was varied from 8 psi to 0 psi in steps of 0.5 psi. The same damaged elbow with the same 
EPDM gasket was tested for the variation between measured damage index and measured operating 
pressure. The test bed, starting at approximately 80 � fluid temperature and 0 psi, was operated up to 
80 ℃ and allowed to pressurize to slightly above 8 psi. The tank was manually set to 8 psi, and then 
operating data was collected on the test bed. The tank pressure was reduced by 0.5 psi between data 
acquisition runs. The test bed was held at 80 � with the RTD probe and heating element.

Pressure vs damage index test on second elbow – Aramid/Buna-N gasket

The operating data on the pipe elbow was collected on July 24, 2019. The operating data on the pipe 
elbow was collected at water temperature of 80 � and pump was run at 60 Hz on VFD controller (‘max 
flow’) in all trials. The water pressure was varied from 8 psi to 0 psi in steps of 0.5 psi. The damage index 
vs pressure trial was repeated, but the EPDM gaskets were removed and replaced with stiffer 
Aramid/Buna-N gaskets. The goal was to observe the trend in damage index with respect to a change in 
pressure. If the relationship appeared to be relatively stable across boundary conditions, then the trend 
between damage index and pressure may be caused by some physical phenomena common between both 
boundary condition configurations. Similar to before, the test bed was heated and pressurized to its 
equilibrium operating conditions. Pressure was released from the tank in 0.5 psi increments and operating 
vibration data were collected between pressure releases. Note that the absolute value of the damage index 
measured was not of interest. Only the trend in damage index with operating parameter was of interest.

Temperature versus damage index test on second elbow – Aramid/Buna-N gasket

The operating data on the pipe elbow was collected on July 25, 2019. The operating data on the pipe 
elbow was collected at water temperature of 80 � and pump was run at 60 Hz on VFD controller (‘max 
flow’) in all trials. The water pressure was varied from 8 psi to 0 psi in steps of 0.5 psi. The temperature 
versus damage index test was repeated with the stiffer Aramid/Buna-N gasket. The procedures used in 
this experiment were the same as described in the previous experiment using the Aramid/Buna-N gasket.

4. HILBERT-HUANG TRANSFORM

Vibration data were processed using the Hilbert-Huang transformation (HHT). The HHT is an 
empirical alternative to traditional signal processing methods such as Fourier transform and wavelet 
analysis. As an empirical method, the HHT allows the data to determine the basis functions, such that 
they do not have to be defined a priori. This flexibility is particularly beneficial as other signal processing 
methods are limited to stationary and/or linear signals, assumptions that are rarely met. As such, the HHT 
has emerged as a popular signal processing method for non-stationary, nonlinear data resulting in a time-
frequency-energy representation [1]. The HHT consists of two steps: (1) Empirical Mode Decomposition 
(EMD) and (2) Hilbert transformation.

4.1 Empirical Mode Decomposition

EMD works by extracting the different intrinsic modes of oscillations, forming intrinsic mode 
functions (IMFs). IMFs are defined as having equal (or differing by one) extremums and zero-crossings 
and having a mean value of zero for the local maxima and minima at any point. Traditional signal 
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processing methods result in simple harmonics with constant amplitudes and frequencies. In contrast, 
IMFs represent simple intrinsic modes of oscillations with varying amplitudes and frequencies.

IMFs are found using a sifting process. As described in [1], the EMD process extracts local signal 
information by eliminating riding waves. The sifting process serves two purposes: “to eliminate riding 
waves, and to make the wave profiles more symmetric. … the first purpose must be achieved for the 
Hilbert transform to give a meaningful instantaneous frequency, the second purpose must also be 
achieved in case the neighboring wave amplitudes have too large a disparity”. Cubic splines are fit to 
connect local maximum and minimum values of the original signal as line “envelopes”. The local means 
of the upper and lower envelopes (�) are found, and the observed signal (�(�)) is subtracted from the 
envelope mean to form the residual (��) for IMF (��)

�� = �(�) − ��        (1)

This sifting process continues to create the second IMF (��)

�� = �� − ��            (2)

The sifting process repeats until a stoppage criterion is met or the residual (��) is monotonic, not 
allowing further IMFs to be found. The stoppage criteria is subjective, but resulting IMFs have been 
found to be fairly robust to stoppage criteria chosen [1]. One stoppage criterion is to end the sifting 
process when the number of extrema and zero crossings differ by at most one in subsequent IMFs, after a 
predetermined S-number. The S-number sets a minimum number of IMFs before looking for stoppage.

The original signal can then be reconstructed by summing the IMFs and the residual

�(�) = ���� + ��           (3)

Once the signal has been decomposed into IMFs, the Hilbert transform is applied to extract the 
instantaneous phase and instantaneous frequency information for each IMF signal. Figure 10 and Figure 
11 show the extracted IMFs for the baseline data. IMFs decrease in frequency by design. Not all IMFs 
contain useful information. Empirical studies suggest period increases with IMF. IMF energies from 
Gaussian white noise follow a normal distribution but deviate from normality at later IMFs [1]. Statistical 
significance of IMFs as a means to distinguish IMFs with signal information from noise may be explored 
in future work. IMF significance will aid interpretation in terms of the system parameters and dimension 
reduction may be explored in future work. Next the HHT process is explained.

4.2 Hilbert Transform

The Hilbert transform (�) extracts the imaginary portion of the complex IMF signal (�(�)). It is given 
as:

�[�(�)] =
�

�
�� ∫

�(�)

���

�

��
��           (4)

As the convolution of �(�) and �(�) =
�

���
, the Hilbert transform calculates the amount of overlap 

between � and � and scales it by �. Where the complex signal is:

�(�) = �(�) + ��[�(�)] = �(�)���(�)          (5)

and instantaneous amplitude (�(�)), phase (�(�)), and instantaneous frequency (�(�)) subsequently can 
be found as:

�(�) = ��(�)� + �[�(�)]�              (6)

�(�) = �����(
�[�(�)]

�(�)
)                       (7)
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�(�) =
��

��
                                            (8)

The phase is interpreted as the number of rotations at a given time point. Phase information has been 
found to be very useful in detecting changes from normal operating conditions [1] and is described in 
more detail Section 5.

4.2.1 Instantaneous Phase

Constraining the phase function direction to clockwise or counterclockwise and restricting the phase 
to have a unique center at each time point will result in unique amplitude and phase combinations that 
satisfy (5) at each time point [1]. The total number of rotations at time � is the sum of the ��(�)’s:

�(�) = ����(�) = ������� �[��(�)]

��(�)
           (9)

Unwrapping the total phase gives a cumulative phase function over time, such that the unwrapped 
phase is a monotonically increasing function. The derivative of the unwrapped phase is then used to 
calculate the instantaneous angular frequency (�(�)). 

Phase information can be extracted using the raw vibration signal. However, when plotting the phase 
extracted from an original signal versus time, [1] shows how intrinsic modes of oscillation are missed. 
That is, the unwrapped phase displays further oscillations when plotted versus time. This suggests that 
phase extracted from the original signal may underestimate the number of rotations at unknown points in 
the time series

The absolute phase shift (��(�)) from the baseline (�) at each weight (��) at each time point allows 
differences in phase functions to be seen more clearly. The absolute phase shift is calculated as:

��(�) = |��(�) − ���
(�)|           (10)

Instantaneous phase, frequency, and amplitude are calculated from the IMFs and form the basis for all 
features used in data analysis. Other features are derived from those listed. Data analysis of the processed 
signal is described Section 5.

5. DATA ANALYSIS

Both statistical and machine learning methods are considered for analyzing the vibration signal. 
Figure 12 depicts the flowchart of vibration data analysis to predict the pipe condition. Accelerometer 
data is normalized and fed into the HHT process. Features are extracted. Logistic regression is used to 
predict pipe condition using phase information. Traditional machine learning algorithms utilize additional 
features in predicting pipe condition.

5.1 Statistical Analysis

Data can be analyzed at each time point within each IMF, at each IMF, at each time point combined 
over IMFs, and at the file level. The statistical analysis used data at each time point, combined over IMF. 
Baseline data were collected on 9 days. Figure 13 displays the baseline data (yellow) relative to the data 
with mass added. Relative phase trends are similar between baseline data and mass added data.

Figure 14 facets the data in Figure 15 by pipe condition to make trends more apparent. Baseline data 
collected on June 13th have much different phase values than other days. Experimentalists should be 
consulted to try and explain this. After 1 second of data collection, differences in phase as a function of 
mass additions become apparent. A mass of 23.5g has more relative rotations than the baseline and is 
clearly distinguishable from mass additions of 2.9g and 13.8g after one second. Mass additions of 6.7g 
and 11.4g appear to increase in relative phase rate substantially around two seconds whereas other mass 
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additions do not. The pipe should vibrate at a lower frequency when more mass is added, which translates 
to fewer rotations than the baseline, and a larger absolute relative phase shift from the baseline. Therefore, 
we would expect data associated with more mass to have a higher relative phase at all time points. Figure 
8 shows this is not always the case, indicating background variability and/or variables that are not 
accounted for.

Figure 10. Extracted IMFs for baseline data (part 1).
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Figure 11. Extracted IMFs for baseline data (part 2).

Figure 12: Data analysis flow diagram.
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Figure 13: Trial 5 variability among baseline files and different mass additions.

Figure 14: Trends in relative phase faceted by baseline/not baseline.

Data collected from sensors 103 and 104 in the x-direction for nine baseline runs and runs with 23.5g 
mass removal between locations 103 and 104 were used in this analysis. Baseline data were limited to that 
collected in the first elbow, as that is also the location of the mass variations. The baseline data recorded 
on the day (June 12, 2019) closest to 23.5g mass removal (June 11, 2019) were used. Each run had 10 
separate trials. The analysis assumes the pipe system was reset between each trial.

Three statistical models were fit with increasing complexity. All models use the binary response 
distinguishing baseline data from 23.5g mass added data. Model A only uses data from Trial 5 and is 
given below:

����� = ���[
��

����
] = �� + �� ∗ �ℎ��� + �� ∗ ���� + �� ∗ �ℎ��� ∗ ����    (11)

where �� = probability of baseline signal

�� = Logit (log-odds) of baseline signal at time 0, phase 0

�� = Rate of change in log-odds of baseline signal for each additional rotation at time 0

�� = Rate of change in log-odds of baseline signal for each additional second without rotation (phase=0)
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�� = Each additional second, the rate of change in log-odds of baseline signal for each rotation

Note the parameters corresponding to 0 seconds and a phase of 0 are not meaningful. Model A 
assumes each observation is independent. It accounts for time in the mean estimate of the model but not 
in the covariance structure. Therefore, it is inherently mis-specified, and the covariance is under-
estimated. Model A had 82.9% prediction accuracy. Figure 15 displays phase versus time facetted by 
baseline/23.5g. Color indicates prediction accuracy for Model A. The plot shows it is more difficult to 
distinguish from the baseline at earlier points in the time series. Red/green colors indicate accurate 
predictions for each pipe condition.

Model B includes data from all trials. It adds a covariance parameter (�) that models observations at 
lag (�) to be correlated as �� within each trial, by using a generalized linear mixed model (GLMM) and a 
random effect for each trial. The benefit of the GLMM is the ability to correctly specify and estimate the 
correlation between observations. Additionally, when fitting a model with all trials the portion of trial-to-
trial variability relative to total variability can be estimated. The fixed effects portion of Model B is the 
same as A. Model B did not converge. The covariance matrix is singular, likely because the lag-1 
correlation for sensor 103, direction-X was 0.999, almost perfectly correlated. Finally, a GLM with all 
trials was fit with trial, phase, and time main effects and phase interaction terms with trial and time 
(Model C). Prediction accuracy for Model C was 85.2%. Figure 16 indicates correct predictions with 
green and incorrect predictions with red by trial.

Table 3 has the corresponding prediction accuracy by trial. Trials 1, 4, 5, and 9 had accuracy less than 
90%. This suggests substantial trial-to-trial variability. That is, in certain trials it is easy to distinguish 
baseline from mass added and in others it is not. Figure 17 shows how variable the 23.5g mass added 
phase data are relative to the baseline, among the trials.

Other signal features should be included in the model or other environmental variables need to be 
controlled to more consistently get accurate predictions. Finally, the Table 4 compares prediction 
accuracy for the three models considered.
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Figure 15: Trends in prediction accuracy from Model A.

Table 3. Model Prediction accuracy

Trial Prediction 
Accuracy

T
rial

Prediction 
Accuracy

1 0.7595 6 0.9259

2 0.9389 7 0.9919

3 0.9849 8 0.9478

4 0.6854 9 0.5030

5 0.8437 10 0.9308



19

Figure 16: Trends in prediction accuracy for Model C.

Figure 17: Variability in relative phase among trials.



20

Table 4. Prediction Accuracy

Model Prediction Accuracy

Model A 82.9%

Model B Did not converge

Model C 85.2%

While the statistical analysis only considered phase information at the time level, the Machine 
Learning approach used multiple features at various levels.

5.2 Feature Extraction

IMFs of each direction for every sensor are used to generate phase values and other statistical 
features. Summary measures of the phase values are further used to generate additional information such 
as slope. Based on the information collected the features are generated. Generated features are used in 
classical machine learning algorithms to predict condition of the pipe. 

IMF level features include mean (�), standard deviation (�), entropy (EN), energy (E), skewness 
(SK), and kurtosis (KU) as shown in Table 5 [2]. Whereas phase features include maximum phase (MP), 
minimum phase (mP), mean phase (EP), maximum slope of the phase (MS), minimum slope of the phase
(mS), mean slope of the phase (ES), standard deviation of slope of the phase (SDP). The slope/rate of the 
unwrapped total phase at each time point is calculated by: 

�����

��
= ����,��� − ����,�      (12)

Table 5. Statistical features from IMFs.

Energy (E)    

�����
�

�

���

Entropy (EN)

− � ��
� �������

�
�

���

Mean (�)

�

�
� ��

�

���

Standard Deviation (�)  

�
�

�
���� − ��

�
�

���

Skewness (SK)

∑ ��� − ��
��

���

��

Kurtosis 

∑ ��� − ��
��

���

��

Using the aforementioned features for each IMF, a feature vector is constructed by combining features 
from X, Y and Z directions of each accelerometer. After feature extraction, finding dependencies within 
the features and with the class label is crucial to make more accurate predictions. 

5.3 Feature Selection

The dependency of each feature on the final prediction is unknown. Not every feature from every 
IMF will contribute to the decision making. To what extent each feature influences the final prediction is 
also unknown. On the other hand, phenomenon of ‘curse of dimensionality’ should also be considered 
since, as the feature dimension increases the problem becomes computationally expensive and difficult to 
solve. Hence, according to Section 3.2, multiple features are generated, and using algorithms such as 
Principal Component Analysis (PCA) [3] , Permutation Importance (PI) [4] best features are selected. In 
addition, if advanced deep learning algorithms are used, then the algorithm can be trained with all the 
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features and the algorithms pick the most significant features to make predictions. In this work, the 
performance of feature selection is verified for both PCA and PI.

PCA is an unsupervised dimensionality reduction or feature elimination algorithm as it does not 
consider the output variables to reduce the dimension of the feature vectors. PCA combines input features 
in a specific way using a statistical procedure that uses orthogonal transformations to convert sets of 
possibly correlated variables into a set of values of linearly uncorrelated variables, called principal 
components. The first principal component has the highest possible variance, and each succeeding 
component indeed has the highest variance possible under the constraint that it is orthogonal to the 
preceding components. Hence, at the end, the least important features are dropped while still retaining the 
important information of all the variables. PCA also ensures that the new features are independent to each 
other. 

To identify the importance/influence of each feature on the prediction, Permutation Importance (PI) is 
used after the model has been trained using ML algorithms. Given a trained model, test data set, and an 
evaluation metric, PI iteratively permutes (shuffles) a feature column (one at a time) and the performance 
is evaluated for a given model on the modified dataset. The performance score for each iteration is stored 
as ��� =  �� − ��, where �� is the base performance metric score and �� is the performance score after 
shuffling. Higher the difference value implies the feature is more important. Advantage of this method is 
it considers the output variable while making feature selection but due to the iterative process it is time 
consuming.  At the end, a subset of the original features is used in modelling and then for the predictions.

5.4 Machine Learning Models

Machine learning is a method of data analysis which automates an analytical model by learning from 
the data, identifying patterns and making decisions with minimum human intervention. Some of the 
machine learning algorithms used in the data analysis are discussed.

5.4.1 Random Forest

Decision tree is a supervised learning algorithm which splits the features into nodes of a tree. The root 
node of the tree is placed with the best feature and the leaf node is the decision variable (class label). 
Decision is made by following the tree from the root node along the tree to the leaf node. But simple 
decision tree suffers from high variance (overfitting) since they are extremely sensitive to data. Bagging 
reduces the overfitting by taking an average of several decision trees with bootstrap sampling. Bootstrap 
sampling draws samples from training data with replacement. Whereas Random Forests (RF) [5] are also 
bagged decision tree models but each decision tree has a random subset of features which eliminates any 
correlation between the trees and improves the performance. This means each model is trained with only 
a small subset of features (i.e. m out n features) as shown in Figure 18.

                       

Figure 18: Random Forest (RF) Algorithm with bootstrapping.

It is important to note that the data does not need to be normalized or rescaled. In addition, RF are 
suitable for high dimensional data since it uses only subset of whole data parallelly, and it can also
balance errors in unbalanced data sets.
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5.4.2 Support Vector Machine

Support Vector Machine (SVM) [6] is a discriminative classifier that finds a hyperplane in an N-
dimensional space (N- the number of features) that distinctly classifies the data points. To separate two 
classes there can be many possible hyperplanes but SVM finds a hyperplane of maximum margin having 
longest distance between data points of both classes. Maximum margin makes future data points to be 
classified with more confidence.  Support vectors are data points closer to the hyperplane and influence 
the position and orientation of the hyperplane. Figure 19 shows the representation of hyperplane and its 
components in SVM.

                                      

Figure 19: Representation of Hyperplane and its components in SVM.

For the input data points � with labels �, the mathematical representation of hyperplane is given by

��� + � = 0                                                            (13)

where � is the weight vector, � is the intercept, and �� ∈ �. Similarly, the equation for the data points 
falling on either side of the hyperplane is given by 

1 If Y� = +1: ��� + � ≥ 1

2. If Y� = −1: ��� + � ≤ −1 (14)

Using equations in (14), the expression for maximum margin is given by

margin ≡ ������
�∈�

(�) = ������
�∈�

|�⋅���|

�∑ ��
��

���

          (15) 

The above expression is defined for linear classifier where data points are linearly separable. But the 
data points are not always linearly separable. In such case, the non-linear data points are made linearly 

separable by mapping to a higher dimension space using kernel function as ���� , ��� = �(��)�(��). 
Gaussian Radial Basis Function (RBF) kernel is the most widely used kernel function defined as

� = �
���������

�

���                                                   (16)

where �� and �� are two datapoints and the parameter � determines the width the of the Gaussian 

function. On the other hand, for a better classification SVM has tuning parameters such as Regularization 
and gamma. The regularization controls the SVM optimization to what extent the data points 
misclassification on training examples needs to be avoided. For a large value of regularization parameter, 

Support

vector

Support

vector
											Hyperplane

�� + � = �

�� + � = �

�� + � = −�
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the optimization chooses a smaller-margin hyperplane, if that hyperplane can classify all the training 
parameters correctly. Conversely, for a very small value of regularization parameter, the optimization 
tries to find a large margin hyperplane even if the hyperplane misclassifies more training examples.  
Whereas, the gamma parameter defines how far the influence of a single training example reaches. With 
low gamma value, training examples far from plausible separation plane are considered in calculating the 
hyperplane. Conversely, a high gamma value picks only training examples closer to the separation plane.

6. MACHINE LEARNING RESULTS

For the two separated experiment set-ups such as 1. Mass addition and, 2. Mass removal, the machine 
learning algorithm is separately developed for classifying 1. Baseline v/s Mass addition, and 2. Baseline 
v/s Mass removal. The split ratio between training and testing examples is 80:20. The feature dimension 
for mass addition is 529 samples for Baseline, and 427 samples for Mass addition with 357 features. 
Whereas for mass removal is 529 samples for Baseline data, and 720 samples for Mass removal with 357 
features. The feature selection is performed using PCA or PI. After the feature selection, the top 15 
features are selected, and the model is retrained. In addition, K-fold cross-validation is also performed for 
performance analysis. Classification accuracy is considered as the main performance metric in both cases. 
The classification performance of the RF and SVM algorithms is discussed in the next sub sections. 

6.1 Random Forest

Parameter settings such as number of decision trees, number of epochs, and number of features per 
decision tree are crucial to have maximum uncorrelation between decision trees and to avoid overfitting. 
The model parameters for RF are described in Table 6. 

Table 6. Random Forest parameters.
Parameter Value

Number of estimators (decision Trees) 10
Maximum features per estimator 60%

Number of epochs 500

Using parameters in Table 4, the RF model is separately trained for mass removal and mass addition 
classification against baseline data. The classification performance for both cases is shown in Table 7.  
The confusion matrix associated with classification of mass removal and mass addition is shown in Figure 
20 (a. mass removal, b. mass addition). In addition, the performance result for K-fold cross-validation 
with 10 splits for mass removal and mass addition is shown in Figure 21 (a. mass removal, b. mass 
addition). 

Table 7. RF Training and Testing accuracy: 1. mass removal v/s baseline 2. mass addition v/s baseline
Case Training accuracy Testing accuracy
Mass Removal 99.6% 97.3%
Mass Addition 98.8 % 95.2%
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Figure 20. RF Confusion matrix for mass removal v/s baseline (left) and mass addition v/s baseline 
(right).

         

Figure 21. RF Training and Testing accuracy of K-fold cross-validation with 10 folds. left: mass removal, 
and right: mass addition.

6.2 Support Vector Machine

Using grid search, the gamma and Regularization parameter are selected. It is found that, the 
estimated parameters tend to overfit. Hence, the Regularization parameter is empirically decreased from 
the estimated value to compensate for overfitting. SVM is tested with PI and PCA based feature selection 
for both cases of classifying mass removal and mass addition. Like RF, SVM also trained with top 15 
important features. Similarly, for PCA the feature dimension was reduced to 15. Performance results of 
SVM classification for mass removal and mass addition are shown in Table 8. The confusion matrix 
associated with classification of mass removal and mass addition is shown in Figure 22(a. mass removal, 
b. mass addition). In addition, the performance result for K-fold validation with 10 splits for mass 



25

removal and mass addition is shown in Figure 23. It is noted that, the performance of SVM+PCA 
algorithm is poor compared to SVM+PI in both cases. In addition, like in RF, the algorithm is not very 
consistent in making good predictions in the case of mass addition.

Table 8. SVM Training and Testing accuracy: 1. mass removal v/s baseline 2. mass addition v/s baseline.
Case Training accuracy Testing accuracy

Mass Removal (SVM+ PI) 97.45 97.91
Mass Removal (SVM+PCA) 87.57 84.72

Mass Addition (SVM+PI) 92.8 91.57
Mass Addition (SVM+PCA) 70.3 68.14

              

Figure 22. SVM Confusion matrix for mass removal v/s baseline (left) and mass addition v/s baseline 
(right).

Overall, the PI based feature selection performs a better classification compared to PCA possibly due 
to the fact that the PI method considers both input features and class labels, whereas PCA does not 
consider class labels. Not considering class labels while reducing dimension, the features which are
highly influential on class label might be dropped leading to reduced feature vectors which are less 
influential on class labels. As far as the different algorithms are considered both RF and SVM have
almost a similar performance. SVM can be used as the final algorithm due to its simple implementation 
and control over hyperparameters tuning.  In addition, for SVM, the regularization parameter is chosen 
less than the value predicted from the grid search to make sure that the performance gets generalized 
better.

Besides, the performance on classifying mass addition is not consistent, and in some cases, it showed 
overfitting. In this case, tuning hyperparameters need to be re-assessed to improve the performance 
without overfitting.



26

                     

Figure 23. SVM Training and Testing accuracy of K-fold cross-validation with 10 folds. left: mass 
removal, and right: mass addition.

7. SUMMARY AND PATH FORWARD

Accelerometer data is converted to IMFs using the iterative EMD process, the phase features are 
extracted, and statistical tests are performed to make prediction on baseline and not baseline classes. The 
performance accuracy was found around 82 to 85%. Proceeding further, summary information from each 
IMFs is extracted along with total phase. Phase slope information is used to construct a feature vector. 
These feature vectors for X, Y, and Z directions of each sensor are extracted. Using the PI and PCA 
feature selection algorithms, the total dimension of the feature vector is reduced to 15 and trained with RF 
and SVM classifiers for the cases 1. Mass removal v/s baseline, and 2. Mass addition v/s baseline. Results 
showed that PI based feature selection outperforms PCA based feature selection. Classification 
performance of both algorithms for mass removal v/s baseline case has a better performance as opposed 
to mass addition v/s baseline case. 

As a path forward, the work classifying mass removal v/s baseline will be continued to predict early 
stage of corrosion in secondary pipe structures. Statistical significance of IMFs, more complex statistical 
models, and integration into machine learning may provide more consistent, interpretable results. Level of 
corrosion will be considered in future work. Discretion and quantification of unexplained variability will 
be addressed.
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